命名實體識別(NER)

命名實體識別 (NER) – 概念、類型和應用

每次我們聽到一個單詞或閱讀一段文字時,我們都有自然的能力來識別單詞並將其分類為人物、地點、位置、價值觀等。 人類可以快速識別一個詞,對其進行分類並理解上下文。 例如,當您聽到“史蒂夫·喬布斯”這個詞時,您可以立即想到至少三到四個屬性並將實體分為幾類,

  • 人: 史蒂夫·喬布斯
  • 公司: 蘋果
  • 地點: 加利福尼亞州

由於計算機沒有這種天生的能力,它們需要我們的幫助來識別單詞或文本並對其進行分類。 這是哪裡 命名實體識別 (NER) 發揮作用。

讓我們簡要了解一下 NER 及其與 NLP 的關係。

什麼是命名實體識別?

命名實體識別是自然語言處理的一部分。 的主要目標 NER 是處理 結構化和非結構化數據 並將這些命名實體分類為預定義的類別。 一些常見的類別包括姓名、地點、公司、時間、貨幣價值、事件等。

簡而言之,NER 處理:

  • 命名實體識別/檢測——識別文檔中的一個詞或一系列詞。
  • 命名實體分類——將每個檢測到的實體分類為預定義的類別。

但是 NER 與 NLP 有什麼關係呢?

自然語言處理有助於開發能夠從語音和文本中提取意義的智能機器。 機器學習通過大量自然語言的訓練幫助這些智能係統繼續學習 數據集.

一般來說,NLP 包括三大類:

  • 理解語言的結構和規則—— 句法
  • 導出單詞、文本和語音的含義並識別它們的關係—— 語義
  • 識別和識別口語並將其轉換為文本 - 演講

NER有助於語義部分 NLP,提取詞的含義,根據它們的關係識別和定位它們。

NER的常見示例

預定的一些常見示例 實體分類 分別是:

Ner的常見例子 人: 邁克爾·傑克遜、奧普拉·溫弗瑞、巴拉克·奧巴馬、蘇珊·薩蘭登

地點: 加拿大、檀香山、曼谷、巴西、劍橋

組織: 三星、迪士尼、耶魯大學、谷歌

時間: 15.35,下午 12 點,

其他類別包括數值、表達式、電子郵件地址和設施。

命名實體識別中的歧義

一個術語所屬的類別對於人類來說在直覺上是很清楚的。 然而,計算機並非如此——它們會遇到分類問題。 例如:

曼徹斯特城 (文章結構) 贏得了英超聯賽獎杯,而在下面的句子中,組織的用法有所不同。 曼徹斯特城 (活動地點) 是紡織和工業強國。

您的 NER 模型需要 訓練數據 進行準確的 實體抽取 和分類。 如果你正在用莎士比亞英語訓練你的模型,不用說,它無法破譯 Instagram。

不同的NER方法

一個主要目標 NER模型 是對文本文檔中的實體進行標註,並對其進行分類。 為此,通常使用以下三種方法。 但是,您也可以選擇組合一種或多種方法。

讓我們今天討論一下您的 AI 訓練數據需求。

創建NER系統的不同方法是:

  • 基於字典的系統

    基於字典的系統可能是最簡單和最基本的 NER 方法。 它將使用包含許多單詞、同義詞和詞彙集合的字典。 系統將檢查文本中存在的特定實體是否也在詞彙表中可用。 通過使用字符串匹配算法,對實體進行交叉檢查。

    使用這種方法的一個缺點是需要不斷升級詞彙數據集以使 NER 模型有效運行。

  • 基於規則的系統

    在這種方法中,信息是基於一組預先設定的規則來提取的。 使用了兩組主要規則,

    基於模式的規則 – 顧名思義,基於模式的規則遵循文檔中使用的形態模式或單詞串。

    基於上下文的規則 – 基於上下文的規則取決於文檔中單詞的含義或上下文。

  • 基於機器學習的系統

    在基於機器學習的系統中,統計建模用於檢測實體。 在這種方法中使用了基於特徵的文本文檔表示。 您可以克服前兩種方法的幾個缺點,因為模型可以識別 實體類型 儘管它們的拼寫略有不同。

NER的應用

NER 在與自然語言處理和創建訓練數據集相關的許多領域都有多個用例 機器學習 深入學習 解決方案。 NER的一些應用是:

  • 簡化的客戶支持

    NER 系統可以根據產品名稱、規格、分支機構位置等關鍵信息輕鬆發現相關的客戶投訴、查詢和反饋。 通過過濾優先關鍵字,投訴或反饋被恰當地分類並轉移到正確的部門。

  • 高效的人力資源

    NER 通過快速匯總求職者的簡歷,幫助人力資源團隊改進招聘流程並縮短時間。 NER 工具可以掃描簡歷並提取相關信息——姓名、年齡、地址、資格、大學等。

    此外,人力資源部門還可以使用NER工具通過過濾員工投訴並將其轉發給相關部門負責人來簡化內部工作流程。

  • 簡化的內容分類

    內容分類對於新聞提供商來說是一項艱鉅的任務。 將內容分類為不同的類別可以更容易地發現、獲得見解、識別趨勢和理解主題。 一個命名 實體識別 工具可以為新聞提供者派上用場。 它可以掃描許多文章,識別優先關鍵字,並根據人員、組織、位置等提取信息。

  • 優化搜索引擎

    搜索引擎優化 NER 有助於簡化和提高搜索結果的速度和相關性。 NER 模型可以運行一次查詢並保存結果,而不是為數千篇文章運行搜索查詢。 因此,基於搜索查詢中的標籤,可以快速找到與查詢相關聯的文章。

  • 準確的內容推薦

    一些現代應用程序依賴於 NER 工具來提供優化和定制的客戶體驗。 例如,Netflix 使用命名實體識別基於用戶的搜索和查看歷史提供個性化推薦。

命名實體識別讓您的 機器學習 模型更高效、更可靠。 但是,您需要高質量的訓練數據集讓您的模型以最佳水平工作並實現預期目標。 您所需要的只是一個經驗豐富的服務合作夥伴,他們可以為您提供隨時可用的優質數據集。 如果是這樣的話,Shaip 是你最好的選擇。 聯繫我們獲取全面的 NER 數據集,以幫助您為您的 AI 模型開發高效和先進的 ML 解決方案。P

社交分享

你也許也喜歡